\(\int \frac {(A+B \cos (c+d x)) \sec ^2(c+d x)}{a+a \cos (c+d x)} \, dx\) [44]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 31, antiderivative size = 69 \[ \int \frac {(A+B \cos (c+d x)) \sec ^2(c+d x)}{a+a \cos (c+d x)} \, dx=-\frac {(A-B) \text {arctanh}(\sin (c+d x))}{a d}+\frac {(2 A-B) \tan (c+d x)}{a d}-\frac {(A-B) \tan (c+d x)}{d (a+a \cos (c+d x))} \]

[Out]

-(A-B)*arctanh(sin(d*x+c))/a/d+(2*A-B)*tan(d*x+c)/a/d-(A-B)*tan(d*x+c)/d/(a+a*cos(d*x+c))

Rubi [A] (verified)

Time = 0.16 (sec) , antiderivative size = 69, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.161, Rules used = {3057, 2827, 3852, 8, 3855} \[ \int \frac {(A+B \cos (c+d x)) \sec ^2(c+d x)}{a+a \cos (c+d x)} \, dx=-\frac {(A-B) \text {arctanh}(\sin (c+d x))}{a d}+\frac {(2 A-B) \tan (c+d x)}{a d}-\frac {(A-B) \tan (c+d x)}{d (a \cos (c+d x)+a)} \]

[In]

Int[((A + B*Cos[c + d*x])*Sec[c + d*x]^2)/(a + a*Cos[c + d*x]),x]

[Out]

-(((A - B)*ArcTanh[Sin[c + d*x]])/(a*d)) + ((2*A - B)*Tan[c + d*x])/(a*d) - ((A - B)*Tan[c + d*x])/(d*(a + a*C
os[c + d*x]))

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3057

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*
x])^(n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Dist[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*
(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c,
0])

Rule 3852

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = -\frac {(A-B) \tan (c+d x)}{d (a+a \cos (c+d x))}+\frac {\int (a (2 A-B)-a (A-B) \cos (c+d x)) \sec ^2(c+d x) \, dx}{a^2} \\ & = -\frac {(A-B) \tan (c+d x)}{d (a+a \cos (c+d x))}-\frac {(A-B) \int \sec (c+d x) \, dx}{a}+\frac {(2 A-B) \int \sec ^2(c+d x) \, dx}{a} \\ & = -\frac {(A-B) \text {arctanh}(\sin (c+d x))}{a d}-\frac {(A-B) \tan (c+d x)}{d (a+a \cos (c+d x))}-\frac {(2 A-B) \text {Subst}(\int 1 \, dx,x,-\tan (c+d x))}{a d} \\ & = -\frac {(A-B) \text {arctanh}(\sin (c+d x))}{a d}+\frac {(2 A-B) \tan (c+d x)}{a d}-\frac {(A-B) \tan (c+d x)}{d (a+a \cos (c+d x))} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(201\) vs. \(2(69)=138\).

Time = 1.37 (sec) , antiderivative size = 201, normalized size of antiderivative = 2.91 \[ \int \frac {(A+B \cos (c+d x)) \sec ^2(c+d x)}{a+a \cos (c+d x)} \, dx=\frac {2 \cos \left (\frac {1}{2} (c+d x)\right ) \left ((A-B) \sec \left (\frac {c}{2}\right ) \sin \left (\frac {d x}{2}\right )+\cos \left (\frac {1}{2} (c+d x)\right ) \left ((A-B) \left (\log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )-\log \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )\right )+\frac {A \sin (d x)}{\left (\cos \left (\frac {c}{2}\right )-\sin \left (\frac {c}{2}\right )\right ) \left (\cos \left (\frac {c}{2}\right )+\sin \left (\frac {c}{2}\right )\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )}\right )\right )}{a d (1+\cos (c+d x))} \]

[In]

Integrate[((A + B*Cos[c + d*x])*Sec[c + d*x]^2)/(a + a*Cos[c + d*x]),x]

[Out]

(2*Cos[(c + d*x)/2]*((A - B)*Sec[c/2]*Sin[(d*x)/2] + Cos[(c + d*x)/2]*((A - B)*(Log[Cos[(c + d*x)/2] - Sin[(c
+ d*x)/2]] - Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]]) + (A*Sin[d*x])/((Cos[c/2] - Sin[c/2])*(Cos[c/2] + Sin[c
/2])*(Cos[(c + d*x)/2] - Sin[(c + d*x)/2])*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])))))/(a*d*(1 + Cos[c + d*x]))

Maple [A] (verified)

Time = 1.21 (sec) , antiderivative size = 93, normalized size of antiderivative = 1.35

method result size
parallelrisch \(\frac {\left (A -B \right ) \cos \left (d x +c \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )-\left (A -B \right ) \cos \left (d x +c \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )+2 \left (\left (A -\frac {B}{2}\right ) \cos \left (d x +c \right )+\frac {A}{2}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{a d \cos \left (d x +c \right )}\) \(93\)
derivativedivides \(\frac {A \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-B \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {A}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1}+\left (-A +B \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )-\frac {A}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1}+\left (A -B \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{d a}\) \(100\)
default \(\frac {A \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-B \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {A}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1}+\left (-A +B \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )-\frac {A}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1}+\left (A -B \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{d a}\) \(100\)
norman \(\frac {\frac {\left (A -B \right ) \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a d}-\frac {2 A \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a d}-\frac {\left (3 A -B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{a d}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {\left (A -B \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{a d}-\frac {\left (A -B \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{a d}\) \(150\)
risch \(\frac {2 i \left (A \,{\mathrm e}^{2 i \left (d x +c \right )}-B \,{\mathrm e}^{2 i \left (d x +c \right )}+A \,{\mathrm e}^{i \left (d x +c \right )}+2 A -B \right )}{d a \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}-\frac {A \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{a d}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) B}{a d}+\frac {A \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{a d}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) B}{a d}\) \(164\)

[In]

int((A+B*cos(d*x+c))*sec(d*x+c)^2/(a+cos(d*x+c)*a),x,method=_RETURNVERBOSE)

[Out]

((A-B)*cos(d*x+c)*ln(tan(1/2*d*x+1/2*c)-1)-(A-B)*cos(d*x+c)*ln(tan(1/2*d*x+1/2*c)+1)+2*((A-1/2*B)*cos(d*x+c)+1
/2*A)*tan(1/2*d*x+1/2*c))/a/d/cos(d*x+c)

Fricas [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 127, normalized size of antiderivative = 1.84 \[ \int \frac {(A+B \cos (c+d x)) \sec ^2(c+d x)}{a+a \cos (c+d x)} \, dx=-\frac {{\left ({\left (A - B\right )} \cos \left (d x + c\right )^{2} + {\left (A - B\right )} \cos \left (d x + c\right )\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) - {\left ({\left (A - B\right )} \cos \left (d x + c\right )^{2} + {\left (A - B\right )} \cos \left (d x + c\right )\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \, {\left ({\left (2 \, A - B\right )} \cos \left (d x + c\right ) + A\right )} \sin \left (d x + c\right )}{2 \, {\left (a d \cos \left (d x + c\right )^{2} + a d \cos \left (d x + c\right )\right )}} \]

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^2/(a+a*cos(d*x+c)),x, algorithm="fricas")

[Out]

-1/2*(((A - B)*cos(d*x + c)^2 + (A - B)*cos(d*x + c))*log(sin(d*x + c) + 1) - ((A - B)*cos(d*x + c)^2 + (A - B
)*cos(d*x + c))*log(-sin(d*x + c) + 1) - 2*((2*A - B)*cos(d*x + c) + A)*sin(d*x + c))/(a*d*cos(d*x + c)^2 + a*
d*cos(d*x + c))

Sympy [F]

\[ \int \frac {(A+B \cos (c+d x)) \sec ^2(c+d x)}{a+a \cos (c+d x)} \, dx=\frac {\int \frac {A \sec ^{2}{\left (c + d x \right )}}{\cos {\left (c + d x \right )} + 1}\, dx + \int \frac {B \cos {\left (c + d x \right )} \sec ^{2}{\left (c + d x \right )}}{\cos {\left (c + d x \right )} + 1}\, dx}{a} \]

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)**2/(a+a*cos(d*x+c)),x)

[Out]

(Integral(A*sec(c + d*x)**2/(cos(c + d*x) + 1), x) + Integral(B*cos(c + d*x)*sec(c + d*x)**2/(cos(c + d*x) + 1
), x))/a

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 196 vs. \(2 (69) = 138\).

Time = 0.23 (sec) , antiderivative size = 196, normalized size of antiderivative = 2.84 \[ \int \frac {(A+B \cos (c+d x)) \sec ^2(c+d x)}{a+a \cos (c+d x)} \, dx=-\frac {A {\left (\frac {\log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}{a} - \frac {\log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}{a} - \frac {2 \, \sin \left (d x + c\right )}{{\left (a - \frac {a \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}}\right )} {\left (\cos \left (d x + c\right ) + 1\right )}} - \frac {\sin \left (d x + c\right )}{a {\left (\cos \left (d x + c\right ) + 1\right )}}\right )} - B {\left (\frac {\log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}{a} - \frac {\log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}{a} - \frac {\sin \left (d x + c\right )}{a {\left (\cos \left (d x + c\right ) + 1\right )}}\right )}}{d} \]

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^2/(a+a*cos(d*x+c)),x, algorithm="maxima")

[Out]

-(A*(log(sin(d*x + c)/(cos(d*x + c) + 1) + 1)/a - log(sin(d*x + c)/(cos(d*x + c) + 1) - 1)/a - 2*sin(d*x + c)/
((a - a*sin(d*x + c)^2/(cos(d*x + c) + 1)^2)*(cos(d*x + c) + 1)) - sin(d*x + c)/(a*(cos(d*x + c) + 1))) - B*(l
og(sin(d*x + c)/(cos(d*x + c) + 1) + 1)/a - log(sin(d*x + c)/(cos(d*x + c) + 1) - 1)/a - sin(d*x + c)/(a*(cos(
d*x + c) + 1))))/d

Giac [A] (verification not implemented)

none

Time = 0.33 (sec) , antiderivative size = 110, normalized size of antiderivative = 1.59 \[ \int \frac {(A+B \cos (c+d x)) \sec ^2(c+d x)}{a+a \cos (c+d x)} \, dx=-\frac {\frac {{\left (A - B\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right )}{a} - \frac {{\left (A - B\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right )}{a} - \frac {A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a} + \frac {2 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )} a}}{d} \]

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^2/(a+a*cos(d*x+c)),x, algorithm="giac")

[Out]

-((A - B)*log(abs(tan(1/2*d*x + 1/2*c) + 1))/a - (A - B)*log(abs(tan(1/2*d*x + 1/2*c) - 1))/a - (A*tan(1/2*d*x
 + 1/2*c) - B*tan(1/2*d*x + 1/2*c))/a + 2*A*tan(1/2*d*x + 1/2*c)/((tan(1/2*d*x + 1/2*c)^2 - 1)*a))/d

Mupad [B] (verification not implemented)

Time = 0.35 (sec) , antiderivative size = 78, normalized size of antiderivative = 1.13 \[ \int \frac {(A+B \cos (c+d x)) \sec ^2(c+d x)}{a+a \cos (c+d x)} \, dx=\frac {2\,A\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d\,\left (a-a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\right )}-\frac {2\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )\,\left (A-B\right )}{a\,d}+\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (A-B\right )}{a\,d} \]

[In]

int((A + B*cos(c + d*x))/(cos(c + d*x)^2*(a + a*cos(c + d*x))),x)

[Out]

(2*A*tan(c/2 + (d*x)/2))/(d*(a - a*tan(c/2 + (d*x)/2)^2)) - (2*atanh(tan(c/2 + (d*x)/2))*(A - B))/(a*d) + (tan
(c/2 + (d*x)/2)*(A - B))/(a*d)